Elektrolumineszenz an ZnS- und ZnS:Al-Kristallen

Von FRANK MATOSSI, GÜNTER SCHMID und ARMIN RÄUBER

Institut für Elektrowerkstoffe der Fraunhofer-Gesellschaft, Freiburg i. Br.,

Professur für Physikal. Chemie der Universität Freiburg i. Br. (Z. Naturforschg. 18 a, 667-668 [1963]; eingegangen am 16. März 1963)

Zinksulfid-Kristalle wurden nach der von NISHIMURA¹ beschriebenen Methode durch Sublimation von lumineszenzreinem ZnS (Riedel de Haën) in sauerstofffreiem Stickstoff hergestellt. Die Kristalle sind, wie üblich, stark fehlgeordnet (Stapelfehler). Sie sind farblos und lassen sich gut spalten. Die Spaltflächen sind (110)-Flächen, deren Zonenachse die [111]-Stapelachse ist². Zur Untersuchung der elektrischen Eigenschaften und der Elektrolumineszenz wurden zwei zueinander parallele Spaltflächen mit Indium bedampft, so daß angelegte Felder senkrecht zur [111]-Stapelachse verlaufen. Kristalle des gleichen Züchtungsansatzes wurden bei 900 bis 1000 °C 12 Stunden in Aluminiumdampf getempert.

Bei Zimmertemperatur hatten die undotierten Kristalle senkrecht zur [111]-Richtung eine Leitfähigkeit in der Größenordnung $10^{-5} \Omega^{-1} \text{ cm}^{-1}$. Die Strom-Spannungs-Charakteristik ist im unteren Teil ohmsch. Daran schließt sich ein quadratischer Bereich an. Diesen Verlauf der Charakteristik kennt man von raumladungsbegrenzten Strömen. Die Leitfähigkeitsangaben beziehen sich auf den ohmschen Bereich.

Bei UV-Anregung mit 365 nm zeigten die undotierten Kristalle eine blaugrüne Lumineszenz bei 490 nm (Abb. 1). Sie zeigten ferner Gleich- und Wechselfeld-Elektrolumineszenz, die bei einer Spannung von 150 V bei einem Elektrodenabstand von 1 mm meßbar wird. Die Elektrolumineszenz-Emission hatte die gleiche spektrale Verteilung wie die Photolumineszenz (Abb. 1).

Die Al-dotierten Kristalle weisen blaue "selbstaktivierte" Lumineszenz auf, mit einem Maximum bei 470 nm. Auch diese Kristalle zeigten intensive Elektrolumineszenz, wobei wiederum das Maximum der Emission mit dem der Photolumineszenz übereinstimmt (Abb. 1). Wir schließen aus diesem Ergebnis, daß für Photolumineszenz und Elektrolumineszenz die gleichen Leuchtzentren verantwortlich sind, wir wollen daher von "selbstaktivierter" Elektrolumineszenz sprechen.

Die Elektrolumineszenz der Al-dotierten Kristalle ist wesentlich intensiver als die der undotierten und wird

- ¹ J. NISHIMURA, Sci. Rep. Res. Inst. Tóhoku Univ. Ser. A **12**, 384 [1960].
- ² A. RÄUBER, J. SCHNEIDER U. F. MATOSSI, Z. Naturforschg. 17 a, 654 [1962].
- ³ Im Gegenaatz zu den hier untersuchten Kristallen zeigten die in einer früheren Arbeit (F. MATOSSI u. G. SCHMID, Z.

Abb. 1. Spektrale Verteilung der Photo- und Elektrolumineszenz; Intensitäten in nicht normierten, willkürlichen Einheiten.

1	Elektrolumineszenz	Kristall	XVI-45	ZnS;	
a	Dhatalanin anna	Valate 11	VUT AF	7.0.	

- 2 Photolumineszenz Kristall XVI-45 ZnS; 3 Photolumineszenz Kristall XVI- 9 ZnS:Al;
- 4 Elektrolumineszenz Kristall XVI- 9 ZnS:Al.

schon bei kleineren Spannungen von 15 V bei einem Elektrodenabstand von 1 mm meßbar. Durch ein Mikroskop mit Multiplieraufsatz wurde die Elektrolumineszenz oszillographisch registriert. Sie ist nicht homogen über den ganzen Kristall verteilt, sondern auf einzelne Punkte beschränkt. Die Leuchtwelle für Wechselspannungsanregung zeigt ein Maximum pro Halbperiode des Feldes. Je nachdem, welchen leuchtenden Punkt man beobachtet, tritt ein Maximum für die positive oder negative Halbwelle auf. Das Maximum ist dabei in Phase oder leicht voreilend bezüglich dem Feldmaximum. Ähnliches wurde bereits an anderen Kristallen beobachtet³. Beim Übergang zu tieferen Temperaturen (130 °K) stellten wir fest, daß zur Erzeugung der Elektrolumineszenz ein um den Faktor 10 höheres Feld nötig wird.

Phys. 166, 455 [1962]) verwendeten, etwas Cu-haltigen, zusätzlich grüne Lumineszenz, die andersartige Leuchtwellen ergibt, wie sie ähnlich auch von W. J. HARPER, J. Elektrochem. Soc. 109, 103 [1962] gefunden wurden.

⁴ A. RÄUBER u. J. SCHNEIDER, Phys. Letters 3, 230 [1963].

Die Al-dotierten Kristalle zeigten ebenfalls die Strom-Spannungs-Charakteristik raumladungsbegrenzter Ströme. Gegenüber den undotierten Kristallen war aber die Leitfähigkeit auf $10^{-7} \Omega^{-1} \mathrm{cm}^{-1}$ erniedrigt. Die Erniedrigung der Leitfähigkeit ist im Einklang mit Elektronenspinresonanz-Untersuchungen⁴. Diese zeigten, daß durch die Aluminiumdotierung ein Akzeptorzentrum gebildet wird.

Wir danken dem Fonds der Chemischen Industrie für

Intensities of BiOCl in Electron Diffraction

By Fuminori Fujimoto *

Institut für Angewandte Physik der Universität Hamburg (Z. Naturforschg. 18 a, 668-669 [1963]; eingegangen am 11. März 1963)

Cowley and Kuwabara^{1, 2} have studied the dependence of the intensity of diffraction from BiOCl on the wave length λ and the crystal thickness H and have calculated the reflection intensities by the phase-grating approximation³. In order to compare the experimental values with the theoretical ones, they used the 220reflection as a standard. The experimental results agreed well with the calculated values for small λH , but these values were quite different from the values obtained by BLACKMAN who calculated by the two-wave approximation. From this results, they concluded that the two-wave approximation is invalid in the case of a material, such as BiOCl, which is composed of both heavy and light atoms.

As the author mentioned in the Kyoto conference⁴, it is not suitable in this case to use the 220-reflection as the standard, because this reflection is the second order reflection of the strong 110 and is strongly affected by the other reflection⁵. In the present paper, we rearranged the results obtained by Kuwabara by using the 310-reflection, which is the first order reflection with high index, as the standard, and examined whether the two-wave approximation is, in this case, applicable or not. The rearranged results are shown in Fig. 1 in which the white and black circles, white and black triangles, and crosses are corresponding to the sample numbers 21, 13, 14, 17 and 10 in Kuwa-BARA, respectively, and the full lines are the curves obtained from BLACKMAN's theory using the structure factors obtained by him⁶. The 310-intensities are normalized to 1.0.

From the figure, we can say that the observed values of the 200-reflection agree very well with BLACKMAN's curve. For the 110-reflection, the observed values are about 20% larger than the BLACKMAN curve and have, however, the same tendency as the curve, as shown by the broken line.

- * On leave from the University of Tokyo, Tokyo, Japan.
- ¹ J. M. Cowley and S. Kuwabara, Acta Cryst. 15, 260 [1962].
- ² S. KUWABARA, J. Phys. Soc., Japan 17, 1414 [1962].
- ³ J. M. Cowley and A. F. Moodle, Acta Cryst. 12, 360 [1959].
- ⁴ F. FUJIMOTO, See Discussion in Suppl. B-II, J. Phys. Soc., Japan 17, 115 [1962].

Dotiert man Kristalle gleichzeitig mit metallischem Aluminium und Zink, so wird die Leitfähigkeit erhöht. Obwohl die blaue Photolumineszenz mit gleicher Intensität auftritt, konnten wir keine Elektrolumineszenz beobachten. Weitere Untersuchungen zur Abhängigkeit der Elektrolumineszenz von Al- und Zn-Dotierungsgrad sind geplant.

die Bereitstellung von Forschungsmitteln.

Fig. 1. Intensity ratios to 310-reflection. Values for 220-reflection are twice of I_{220}/I_{310} . Full lines are calculated by BLACKMAN's theory.

For the 220-reflection, the observed points have about half the values of the BLACKMAN curve for the region $\lambda H > 3.5$ and gradually approach to the curve with decreasing H for the region $\lambda H < 3.5$.

As the reason for the deviation of the observed points from the BLACKMAN curve, we may consider that the calculated structure factor is different from the actual value, because the theoretical values of structure factors may vary with crystal state, which is either neutral or ionic, and, moreover, with the selection of atomic wave function and temperature factor. Therefore, it is possible that the difference between theory and experiment is 20%.

In the results of KUWABARA, the observed points for each sample are in good agreement and the values obtained from No. 21, 13 and 14 have the same tendency as that expected by the calculated value. On the other hand, our results deduced by changing the standard are different from the above results in the following points, that is, the extension of observed points is about twice of the above, though we cannot consider

- ⁵ F. FUJIMOTO, J. Phys. Soc., Japan 15, 859 [1960].
- ⁶ The structure factors obtained by him are different from those obtained from my calculation. Especially, the former value for the 110-reflection is about 0.7 of the latter. The reason for this difference is not clear in their papers.

that the error in the latter case is larger than that in the former, since the observed intensities of the 310reflection are stronger than, or nearly equal to, that of the 210-reflection. Especially, the points for the above three samples have tendencies quite different from each other, and we cannot apply the calculated curve to the experimental values for any three samples. These facts appear in the 200-reflection.

The intensity variation of the 220-reflection with λH is similar to the results of the 222-reflection obtained from Al⁷ and Ag⁸ in which the intensities are about half of the values calculated from the two-wave ap-

⁷ M. HORSTMANN and G. MEYER, Acta Cryst. 15, 271 [1962]. ⁸ N. Wedel, Acta Cryst., in press.

Zum "Vergessenen Effekt"

Von H. Korsching

Max-Planck-Institut für Physik und Astrophysik, München (Z. Naturforschg. 18 a, 669 [1963]; eingegangen am 10. April 1963)

In einer vorhergehenden Arbeit¹ war die Technik zur Beobachtung der Strömungsverhältnisse in einer Thermodiffusionskolonne geschaffen worden. Es lag nahe, damit einmal die Strömungsinversion (Strömungsrichtung an der heißen Wand nach unten), die der "vergessene Effekt" in manchen Fällen bewirken soll, direkt nachzuweisen. Bisher war dieser Vorgang nur indirekt aus der Abhängigkeit der Trennung von der Zeit erschlossen worden^{2, 3}.

Mit einer verbesserten flachen Apparatur wurden vier typische Stoffpaare untersucht. Die kalte Seite der Apparatur bestand aus Nickel, in das vertieft Vorratsgefäße (je 0,3 cm³) und arbeitendes Volumen (Höhe 5 cm, Tiefe 0,4 mm) eingefräst waren. Beides war, in einem Abstand von einigen Millimetern, von einer rahmenförmigen Vertiefung für die Quecksilberdichtung umgeben. Auf die ebene, geläppte Nickelfläche wurde die heiße Seite, die aus einem flachen, hohlen Glaskasten (Gesamtdicke 4 mm) bestand, federnd aufgepreßt. Beide Seiten wurden von durchfließendem Wasser auf verschiedener, konstanter Temperatur gehalten. Als Anzeiger für die Strömung in der Kolonne dienten einerseits Benzolruß (bei 200° im Vakuum entgast) und andererseits ein ca. 0,01 mm dünner Glasfaden von 8 mm Länge, der parallel zur kalten Wand in etwa 0,1 mm Abstand senkrecht zur Strömungsrichtung eingespannt war. Beobachtet wurde mit 125-facher Vergrößerung durch die heiße Seite hindurch. Bei dieser Vergrößerung war die Tiefenschärfe ausreichend klein, um zwischen auf- und absteigender Strömung bequem zu unterscheiden.

Bereits eine halbe Minute nach Versuchsbeginn konnte die Strömungsrichtung beobachtet werden. Nach einer bestimmten Zeit wurde im oberen und im unteren Vorratsgefäß die Trennung gemessen. Zusammen aus beiproximation for large λH and approach to that with decrease in λH , though these reflections are the second order reflections of the strong 110- and 111-reflections, respectively, and Al or Ag foils are, of course, composed of only one kind of atom, unlike BiOCl.

For the theoretical treatments, more precise calculations are necessary, because the structure factors for the reflections of BiOCl are very large and then, we cannot say that the first order calculation is sufficient in this range.

From the above consideration, we cannot conclude that the two-wave approximation is not applicable for reflections from a material composed of heavy and light atoms. In respect to this work, we must study more precisely both experiment and theory in the future.

den Bestimmungen folgt eindeutig das Vorzeichen des Thermodiffusionskoeffizienten.

Untersucht wurden die Stoffpaare: Tetrachloräthan-Tetrabrommethan; Brombenzol-Tetrachlorkohlenstoff; Cyclohexan-Cyclohexanol und Toluol-Cyclohexan. Bei allen Gemischen reicherte sich die erstgenannte Substanz im oberen Vorratsgefäß an. Da alle Trennungen ähnlich verlaufen, sei nur die Zeitabhängigkeit der Trennung Tetrachloräthan-Tetrabrommethan für die Anfangskonzentration $c_0 = 0.75$ in Tetrachloräthan wiedergegeben (Abb. 1). Die Temperatur der heißen Seite war 60° , die der kalten Seite betrug 40° .

Abb. 1. Trennung von Tetrachloräthan-Tetrabrommethan (vgl. Text).

In allen Fällen beobachtete man, daß während der ganzen Versuchszeit die Strömung an der heißen Wand nach oben, und an der kalten Wand nach unten ging. Der "vergessene Effekt" erreicht also nicht die Wirksamkeit, die für eine Strömungsinversion erforderlich ist.

Die in den zitierten Arbeiten^{2, 3} gemessene Umkehr der Substanztrennung muß also anderweitige Ursachen haben und kann nicht die Thermodiffusionstrennung selber betreffen.

A. L. JONES U. E. C. MILBERGER, Industr. Eng. Chem. 45, 2689 [1953].

¹ H. Korsching, Z. Naturforschg. 17 a, 93 [1962].

² I. PRIGOGINE, L. DE BROUCKÈRE U. R. AMAND, Physica 16, 577, 851 [1950].